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(Yp =[y1;ii;yn]2 CP M),
I 1fn!1 ,then, strong law of large numbers
&, £ ¢,

or equivalently, in spectral norm

¢ C Yo

Random Matrix Regime
I Nolonger valid if p;n!1  with p=n! c2 (0;1),

¢ Cp 6o

I For practical p;n with p' n, leads to dramatically wrong conclusions
I Even for p = n=100.
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Theorem (Macenko{Pastur Law[Macenko,Pastur'67] )

Xp 2 CP " with i.i.d. zero mean, unit variance entries.
Asp;n!l with p=n! ¢2 (0;1 ), es.d. p of %prp satis es

b .PZSZ .
weakly, where
I ¢(fog)=max f0;1 ¢ g

I on(0;1), ¢ has continuous densityf. supported on [(1 P 021+ P C

)]

1

p _
fe)= ;- (x @ o2+ "
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Spiked Models

Small rank perturbation: Cp = Ip + P, P of low rank.
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Spiked Models
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Spiked Models
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(1
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In particular,
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Spiked Models
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Other Spiked Models

Similar results for multiple matrix models:

I Yp= L1 + P)EXpX (I + P)?
p n P p

I Yp= IXpX, + P

I Yp = 32X, (1 + P)X

I Yp= 2(Xp+ P) (Xp+P)
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Takeaway Message 1

\RMT Explains Why Machine Learning Intuitions
Collapse in Large Dimensions"
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I GMM setting: x(la);:::;xﬁ? N ( a;Ca),a=1;:::5k
I Non-trivial task:

Ka ok=0@); tr(Ca Co)= 0P: t[Ca Cn?= O

Classical method: spectral clustering
| Extract and cluster the dominant eigenvectors of

1
K= 0aix)a i Gaix)= 1 o xj k2

I Why? Finite-dimensional intuition
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The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kj; = exp( %kxi Xj k2) and second eigenvectorv;
(xi N ( ;l1p), =(2:;0;:::;07 2 RP).
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The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kj; = exp( %kxi Xj k2) and second eigenvectorv;
(xi N ( ;l1p), =(2:;0;:::;07 2 RP).

Key observation: Under growth rate assumptions,

n 0 X
1 s 2 n

max “kxi o xjk? S ol == tr —2Ca:
16 n P p n

I this suggestsK ' f( )1n 1!
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The curse of dimensionality and its consequences (3)

MNIST ImageNet 20NewsGroup
raw VGG-features BERT embedding
p =784, n =500 p =3084, n =500 p =300, n =500

# # #
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The curse of dimensionality and its consequences (4)

(Major) consequences:
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with 3 =[j1;::5:k]2 R" K, ja =(0;1n,;0)7 (the clusters!) and A 2 Rk K
function of:

P, f9), 190
I ka pktr(Ca Cp)tr((Ca Cp)?),fora;b2f1;:::;kg.

& This is a spiked model! We can study it fully!
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Performance prediction: spectral clustering

Asymptotic analysis of eigenvectors of K: (MNIST, p=28 28(=784))
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Takeaway Message 2

\RMT Reassesses and Improves Data Processing”



Improving Kernel Spectral Clustering

Going further than ( [Kammoun,Couillet'17] ),
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Improving Kernel Spectral Clustering

Going further than ( [Kammoun,Couillet'17] ), if f% )=0,

1 fO)E% %)
T, 0 V275 T T -
{_{1 nly +f( )pZZ +JAJ', avecA = F K a bk tr (Ca Cp)iii:

Ok (”)

Gaussian case N (0;C1) vs. N (0;C»2)

Kernel Kjj = exp( %kxi x;j k?) Kernel Kjj = ( %kxi xjk? )2
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Improving Kernel Spectral Clustering

EEG data: sane vs. epileptic patients

Kernel Kjj =exp( kxi xjk?) Kernel Kj = ( %kxi xjk? )2

2p
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Improving Kernel Spectral Clustering

EEG data: sane vs. epileptic patients

Kernel Kjj =exp( kxi xjk?) Kernel Kj = ( %kxi xjk? )2

2p

I Remark: highly counter-intuitive kernel!
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Another, more striking, example: Semi-supervised Learning

Semi-supervised learning: a great idea that never worked!
| Setting: assume now

| (a)..... (a)
X375 X Ma

x (2 unlabelled (a lot).

' already labelled (few),

I Machine Learning original idea: nd \scores" Fi, for x; to belong to classa

XX -
F =argmin gopn « Ki FaDj FaDj % Fg' = ix2c.¢
a=1l ij
I Explicit solution :
[u] 1 ! 1 i
uj] —
F = In[u] D[u] K[UU]D [u] D[u] K[u|]D [|]F

where D =diag( K 15) (degree matrix) and [ul], [uu], ...blocks of
labeled/unlabeled data.
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The nite-dimensional case: What we expect
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Figure: Outcome F of Laplacian algorithms (= 1) for N( ;I ) with p=1.
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The reality: What we see!
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The reality: What we see! (on MNIST)
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Figure: Vectors [F <“)] a,a=1;2;3, for 3-class MNIST data (zeros, ones, twos),n = 192 ,
p =784, n;=n =1 =16, Gaussian kernel. 29/47
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[F(u)] ;2 (©nes)
[F(u)] :3 (Twos)
1
S
w
0:5 [~
o U L
| | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Figure: Vectors [F (“)] a,a=1;2;3, for 3-class MNIST data (zeros, ones, twos),n = 192 ,

p =784, n;=n =1 =16, Gaussian kernel. 29/47
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Exploiting RMT to resurrect SSL

Consequences of the nite-dimensional \mismatch"
I A priori, the algorithm should not work
I Indeed \in general" it does not!

I But, luckily, after some (not clearly motivated) renormalization (e.g.,
Fi Fi =npp;), it works again...

I BUT it does not use e ciently unlabelled data!

Chapelle, Schelkopf, Zien, \ Semi-Supervised Learning’, Chapter 4, 2009.

1,

Our concern is this: it is frequently the case that we would be better o just discarding
the unlabeled data and employing a supervised method, rather than taking a
semi-supervised route. Thuswe worry about the embarrassing situation where the

addition of unlabeled data degrades the performance of a classi er.
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Asymptotic Performance Analysis
Theorem (Mai,C'18] Asymptotic Performance of SSL)
For x; 2 Cp unlabelled, score vectorFi; 2 R¥ satis es:
Fi; Gb! 0; Gb N (mb; b)
with mp 2 R, , 2 Rk K function of

FfO)fo )% ), 15000 k. CaiiiiCy
I onlyn.
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Improved SSL

Solution: From RMT calculus (but not from ML intuition! ), solution is to replace K by
1
K PKP, P =1, =1,1]:

n
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Improved SSL

Solution: From RMT calculus (but not from ML intuition! ), solution is to replace K by
1

K PKP; P =1n =151 :
n

Theorem (Mai,C'19] Asymptotic Performance ofmproved SSL)
For xi 2 Cp unlabelled, score vectorF;. 2 RK satis es:

H; Gp! 0, G, N (mb;~m

with mp 2 Rk, =, 2 Rk K function of
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I' n; and ny.
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—a— Laplacian regularization
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= @= Centered regularization
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What about real data?

194 - -

192 |- —
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Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom :

average accuracy as a function ofn,; with ny; = 10, computed over 1000 random realizations.
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Experimental evidence: MNIST

Digits (0,8) 2,7) (6,9)

ny =100
Centered kernel (RMT) 895 36 895 34 853 59
Iterated centered kernel (RMT) 895 36 895 34 853 59
Laplacian 755 5.6 742 5.8 70.0 5.5
Iterated Laplacian 87.2 47 86.0 52 814 6.8
Manifold 88.0 47 884 39 828 65

ny = 1000
Centered kernel(RMT) 922 09 925 08 926 16
Iterated centered kernel (RMT) 923 09 925 08 929 14
Laplacian 65.6 4.1 744 4.0 69.5 3.7
Iterated Laplacian 922 09 924 09 92.0 1.6
Manifold 91.1 1.7 914 19 91.4 2.0

Table: Comparison of classi cation accuracy (%) on MNIST datasets with n; = 10
1000 random iterations for n, = 100 and 100 for n, = 1000 .

. Computed over
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Experimental evidence: Tra c signs (HOG features)

Class ID 2,7) (9,10) (11,18)

ny =100
Centered kernel(RMT) 79.0 104 775 9.2 785 7.1
Iterated centered kernel (RMT) 85.3 5.9 89.2 5.6 90.1 6.7
Laplacian 73.8 9.8 77.3 9.5 78.6 7.2
Iterated Laplacian 83.7 7.2 88.0 6.8 87.1 8.8
Manifold 776 89 814 104 823 10.8

ny = 1000
Centered kernel(RMT) 83.6 2.4 84.6 2.4 88.7 9.4
Iterated centered kernel (RMT) 84.8 3.8 88.0 55 96.4 3.0
Laplacian 727 4.2 88.9 5.7 958 3.2
Iterated Laplacian 83.0 55 88.2 6.0 92.7 6.1
Manifold 77.7 538 85.0 9.0 90.6 8.1

Table: Comparison of classi cation accuracy (%) on German Tra ¢ Sign datasets with n; = 10 .
Computed over 1000 random iterations for n, = 100 and 100 for n, = 1000 .
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Even more striking: new intuitions and cheap algorithms

Computation cost reduction : (p;n 1)

I "-subsamplingk 2 R™
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Takeaway Message 3

\RMT Also Grasps Real Data' Processing"



From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

38/47



From i.i.d. to concentrated random vectors
Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

De nition (Concentrated Random Vector)
x 2 RP is concentrated if, for all Lipschitz f : RP | R, there existsm¢ 2 R, such that

P jf(x) msj>" e 9): g increasing function.

38/47



From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

De nition (Concentrated Random Vector)
x 2 RP is concentrated if, for all Lipschitz f : RP | R, there existsm¢ 2 R, such that

P jf(x) msj>" e 9): g increasing function.
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From i.i.d. to concentrated random vectors

Theorem (Louart,C'18] [Seddik,C'19] Kernel Universality)

For xi L ( a;Ca) concentrated random vector , under the conditions of
[C-Benaych'16],

. 1
kk Rk fS o0 R=f()1n1 + BzzT+ JAIT +

with A only dependent onf ( );f9 );f%Q ), 1;:::; &, C1;:::;Cyk.
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From i.i.d. to concentrated random vectors

Theorem (Louart,C'18] [Seddik,C'19] Kernel Universality)
For xi L ( a;Ca) concentrated random vector , under the conditions of
[C-Benaych'16],

kk Rk fS o0 R=f()1n1 + %zzT+ JAIT +
with A only dependent onf ( );f9 );f%Q ), 1;:::; &, C1;:::;Cyk.

€& Same result as [C-Benaych'16]. .. Universality of rst two moments!
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Ok...so what?

Key Finding. GAN-generated data are concentrated random vectors!

40/47



Ok...so what?

Key Finding. GAN-generated data are concentrated random vectors!

40/47



Ok...so what?

41/47



Ok...so what?

42147



Gaussian, GAN, and real data

Results. [Seddik,C'19]
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Our Team: the MIAI \LargeDATA" chair @ University Grenoble-Alpes
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Our Team: the MIAI \LargeDATA" chair @ University Grenoble-Alpes

Join us !
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The End

o 09 00 0 O

Thank you!
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